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Abstract
Identifying and prioritizing the disease causing variants from thousands of
variants that are called during a whole genome and exome sequencing
analysis is a time consuming and manual task. Pathogenicity based
ranking of variants greatly improves the speed of report generation, in turn
increasing the diagnostic yield.

Machine learning models recognize patterns in variant data and help in
informed decision making and thus reduce time in the variant prioritization
process. Models trained on public disease databases have not been so
successful because of the presence of noisy and unvalidated data.

We have developed a supervised machine learning model trained on
manually curated and reviewed disease causing variants from a cohort of
~100,000 clinical samples. The VaRTK (Variant Ranking ToolKit) model is
a random forest model trained on 46,345 (10,336 disease causing and
36,009 benign variants) which cover ~10,000 genes.

Our model was able to achieve a F1 and sensitivity of 0.98 on unseen test
data consisting of ~15,000 variants covering ~6,000 genes. The model
performance was further evaluated on a validation cohort of 166 samples
which were resolved through manual interpretation. The model ranked the
manually selected pathogenic variant(s) in the Top 20 in 90.66% of cases.
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Figure 4. Comparison of VaRTK model with existing in silico tools
(A) VaRTK model was compared against 12 other nsSNV prediction tools
(MA – Mutation Assessor, MT – Mutation taster, AM – AlphaMissense),
using unseen test set of ~2,600 clinically reported rare missense variants.
The variants were selected based on their absence in the ClinVar database
to reduce circularity of data as it has been observed that some of the
prediction tools use the variants from ClinVar database for training. (B)
Comparison of VaRTK model performance against other in-silico prediction
tools using the same test as mentioned in (A). The AP (average precision)
versus AUC plot is an important measure of evaluating a model
performance when the train set classes are unbalanced. Average precision
indicates whether a model can correctly identify all the positive examples
with low amount of false positives. VaRTK shows better performance
across both metrics in comparison to other models. (C) Analysing the
performance of VaRTK model on variants used in recently published study
from (Emedgene) Meng et. al. The VaRTK model was able to classify 98%
of the variants into the correct corresponding category.
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❖ VaRTK is trained on large number of manually curated diverse clinically
classified variants. The benign set is also picked systematically to obtain a
training set unbiased by specific features.

❖ A set of 36 features are selected from 200+ variant features that provides
the best performance.

❖ VaRTK model achieves an F1 and Recall score of 0.98 with AUC as 0.99.

❖ VaRTK model is able to rank 90.7% of the manually selected variants in
top 20 among all the variants in the exomes.

❖Comparison with other in-silico model shows that VaRTK achieves better
performance metrics over other tools including Google AlphaMissense.

Figure 3. Performance metrics
(A) ROC on the test using unbalanced model. (B) Performance of VaRTK
model on 166 clinical cases which were manually resolved. The model
was able to capture the causative variant in the top 20 ranks in 90.66% of
the cases without any gene based filter applied on the variants.
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Figure 1. VaRTK model development
The figure illustrates the model development process which involves
curating unique training set from our in-house variant database which
stores all pathogenic, likely pathogenic and variants of uncertain
significance reported in the clinical diagnosis of a sample. We have
built the model from more than 100,000 clinical case reports. The
positive set is derived from pathogenic and likely pathogenic variants
reported in the clinical reports. The negative set (benign) is derived
from the pathogenic/likely pathogenic case reports. Variants are
randomly sampled from the pathogenic/likely pathogenic reports after
removing the pathogenic variant in the report. We performed a careful
random sampling to balance genes, variant class and variant allele
frequency. We also performed study of more than 200 variant features
and identified a set of 36 features which are used for model building. A
well studied list of features are extracted for each of the variants which
incorporates in-silico tool prediction scores, allele frequencies, disease
databases, internal frequency databases and few variant level
identifiers. The dataset is then split into train and test. The training set
is used as the input for the random forest model. The model gives us a
prediction score between 0 to 1, the higher scores denoting deleterious
nature of the variant.

Model Train
Positive

Train
Negative

Test
Positive

Test
Negative

Unbalanced dataset 10,336 36,009 3,446 12,003

Balanced dataset 10,336 10,336 3,446 12,003

Missense unbalanced 3,932 32,553 3,446 12,003

Missense  un-balanced 3,932 3,932 3,446 12,003

Model F1 Accuracy Precision Recall AUC

Unbalanced dataset 0.98 0.99 0.99 0.98 0.999
Balanced dataset 0.98 0.99 0.97 0.99 0.999

Missense unbalanced 0.95 0.98 0.99 0.91 0.999

Missense  un-balanced 0.96 0.98 0.95 0.97 0.998

Table 1. Train and test dataset 
We trained four models to see which performs better when encountered with class 
imbalances and variant class. The first two models are trained on all variant 
classes while the third and fourth model are only trained on missense variants. 

Figure 2. Train and test set top 20 HPO phenotypes
The top 20 HPO terms observed in the training (A) and test (B) set samples is
provided here. Since a large number of samples that we receive is related to
neurology; global development delay, seizure, hypotonia are the top phenotype
terms observed in our training set.
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Table 2. Performance metrics of model on unseen test set
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