For any suggestions or to know about the guidelines for submitting guest blog articles, please write to Vinay CG at
mgus-blog@medgenome.com
World Cancer Day is a day to reflect and celebrate research victories, the battles that anyone with cancer fights, the search for new ways to detect cancer early and treat it as effectively as possible. Yet, cancer statistics remain sobering. Globally, there were an estimated 19.3 million new cancer cases and 10 million cancer deaths in 2020 . The number of people living with cancer is expected to grow by around 1 million every decade between 2010 and 2030.
Spatial transcriptomics is a revolutionary molecular profiling method that allows scientists to measure in a tissue sample and map the activity to specific cell types and their location. This novel technology is paving the path to new discoveries that are proving instrumental in helping researchers gain a better understanding of biological processes and diseases leading it to be called the Method of the Year in 2020.
It is known that all the hereditary information is contained within an organism’s genome. Owing to continuous global efforts many new bioinformatics databases are emerging and has seen an up trend in the recent past, a reflection on how NGS data is impacting our understanding of life and our need to constantly develop new methods to investigate and decode the information in and around DNA (or RNA for some viruses) and its nucleotide sequences.
With the advent of novel Next generation sequencing (NGS) technology platforms – DNA Sequencing has seen a revolutionary leap both in terms of cost and application in cutting-edge research.. Today, we can sequence an entire Human genome in a day compared to the conventional Sanger sequencing using capillary electrophoresis. It is now possible to identify and track genetic variation in a more efficient and precise manner. Also, owing to this seamless sequencing capability now thousands of variants can be analysed within a large population in a short span of time.
Since December 2019, the outbreak of Corona Virus Disease (COVID-19) has posed a serious threat to global health. The number of cases increased quickly and has resulted in over four million deaths worldwide, as of July 2021. In response to this, numerous research projects have been conducted to study the disease etiology, the patterns of epidemic, and potential treatments for the disease. The adaptive immune response plays a central role in clearing viral infections and in turn directly influences patients clinical outcomes.
Since December 2019, the outbreak of Corona Virus Disease (COVID-19) has posed a serious threat to global health. The number of cases increased quickly and has resulted in over four million deaths worldwide, as of July 2021. In response to this, numerous research projects have been conducted to study the disease etiology, the patterns of epidemic, and potential treatments for the disease. The adaptive immune response plays a central role in clearing viral infections and in turn directly influences patients clinical outcomes.
In my previous blog, I highlighted the uniqueness of single cell RNA sequencing technologies and how these can be used to understand 5’ and 3’ gene expression, T and B cell immune repertoire profiles, and more specific antibody-based approaches such as CITE-Seq as well as epigenetics approaches with ATAC-Seq. In this blog, the power of multi-omic approaches to simultaneously determine open chromatin regions with gene expression in a single cell is reviewed.
The scientific curiosity to understand the cause of a disease has led to many technological innovations. As the cost of genomic sequencing started to fall a decade ago, it opened up numerous new technologies that could provide unique insights in understanding disease biology even at a molecular level. These include whole genome data (genomics), changes in the structure of chromatin, understanding RNA sequences and their expression (transcriptomics) to proteomics-based approaches to understand protein structure, folding and the measurement of various metabolites (metabolomics).
A fundamental challenge in biomedical research is to identify accurate, early indicators of a disease. Recent advances in sequencing technologies have led to unparalleled efforts to characterize the molecular changes that underlie the development and progression of complex human diseases, including cancer. Scientists have widely used RNA-seq analysis to study the transcriptome in populations of cells. More recently, single-cell RNA seq studies have been used to gain insight on cellular traits and changes in cellular state.
Single-cell genomics techniques are revolutionizing our ability to characterize complex tissues. Although bulk RNA sequencing experiments can be insightful, they often mask important biological activity of rare cell types and fail to show the variability in gene expression between individual cells. The rapid development of low-input RNA seq methods has led to an explosion of single-cell RNA-seq platforms, each with their own advantages and limitations. Droplet-based methods (10X Chromium, DropSeq) can be used to analyze thousands of cells in a single prep.
Technological advances in sequencing capabilities have rapidly accelerated our understanding of human health and disease. From the workhorse short-read Illumina sequencing data to the recent advent of third-generation sequencing instruments such as PacBio, Nanopore, that now enable single molecule sequencing, genomics and its applications has assumed a wider scope in recent times ranging from specialised studies such as transcriptomics, epigenomics, metagenomics to more specific application areas such as biomarker discovery